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LETTER TO THE EDITOR 

Supersymmetric composition of interactions 

F M Lev 
North-Eastern Interdisciplinary Research Institute, Far-Eastern Science Centre of USSR 
Academy of Sciences, Magadan, USSR 

Received 6 August 1985 

Abstract. The solution of the interaction composition problem found in the author’s 
preceding work is extended to the case of simple supersymmetry. 

In our preceding work (Lev 1984) the problem of interaction composition in three 
basic forms of relativistic dynamics proposed by Dirac (1949) has been discussed in 
detail. We also showed that in the instant form there exists a simple solution of the 
problem, and this solution agrees with that obtained by Coester and Polyzou (1982) 
within the framework of the multichannel scattering theory. An analogous solution 
was also found by Mutze (1984). Note that although in their works Coester and 
Polyzou (1982), Mutze (1984) and Lev (1984) used different techniques, the basis of 
these works is the Sokolov method of packing operators (Sokolov 1977, 1978). 

In this work we show that the scheme used (Lev 1984) can be extended to a case 
when the theory is not only PoincarC, but super-PoincarC-invariant. For simplicity, 
we limit ourselves to the case of simple N = 1 supersymmetry. As will become evident 
hereinafter, in the case of extended supersymmetry there may arise considerable 
technical complications ; however, the basic principles of the problem concerning the 
transition fr?m conventional symmetry to supersymmetry are not changed. 

Let x + T ( x )  be some representation of the PoincarC superalgebra in Hilbert space 
X. Suppose that this representation is a description of the considered system in the 
instant form, i.e. operators of the 3-momentum P and representation generators of the 
group SU(2) are fr:e of interaction. As in our previous work (Lev 1984), over the 
representation x + T ( x )  there may be constructed a decomposition X= j0 X( p)d3p, 
and the spin operators j acting in X ( 0 )  can be defined, where T(0) = X ( p )  at p = 0. 
It follows from the von Neumann theorem that the mass operator M, the parity operator 
(in terms of Z, grading) and the representation operators of odd elements of PoincarC 
superalgebra @ ( (Y = 1,2,3,4) are decomposable operators in the representation X ; 
SO %(p)d3p. Let us denote through 6i and 4” the reduction on X ( 0 )  of operators M 
and 6“ respectively. 

A set of operators 6- forms the Majorana spinor which satisfies, in particular, the 
following commutation and anticommutation relations 

where p,v = 0,1,2,3, $Ipv are representation generators of the Lorentz group, $@- 
operators of 4-momentum and up” = a[ -y,,y,,]. In the Majorana representation, matrices 
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yF can be represented as direct products (see e.g. Novozhilov 1972): 

YO = P2 x (+I y 1  = ip, x 1 y 2  = ip2 x u2 y 3  = -ip, x 1 (2) 

where { p }  and {a }  are two sets of Pauli matrices. In the Majorana representation, 
C = f yo. We choose the sign '+' to provide for positivity of energy. 

As in the previous work (Lev 1984), one can construct a unitary operator (6' = JO 
&( p ) - '  d3p from X to L2( p )  0 X(O), where L2( p )  is the space of complex functions 
of p ,  such that 1 If(p)12 d3p < W. In complete analogy with the case of one-particle 
representations one can directly calculate an explicit form of representation operators 
of Poincari superalgebra in the space L 2 ( p ) 0  X(0). The representation operators of 
even elements of Poincari superalgebra are of the sam! form as those in the PoincarC- 
invariant theory (see, e.g., Lev 19841, and operators Q are of the following form 

0 = 1 e~p[&Y'(p/A)a,~] de^(A)4 ( 3 )  

where w p u ( p / A )  are the parameters of a purely Lorentz boost defined by the 3-vector 
p / h ,  ; (A) the spectral function of the operator &, and the integral in formula (3 )  is 
understood as a strong limit of the corresponding Riemannian sums. Operators h, j 
and 4 acting in X(0)  satisfy the commutation-anticommutation relations the form of 
which is easily derived from the form of corresponding relations in the representation 
of PoincarC superalgebra. 

Let & ' I 2  denote a positive square root of the operator m. Then the operators 

sajisfz the aFtic2mmutation relations for the creation and destruction operators: 
{ C1, CT} = { C2, C;} = 1, and other anticommutators are equal to zero. The symbol '*' 
corresponds to the conventional Hermitian conjugation, silflce we consider the rep- 
resentation of Poincari superalgebra in which the operators Q are Hermitian. Proceed- 
ing from the formulae for commutation of operators j and ( and from (2), one can 
easily obtain through a direct calculation that 

Let us now proceed to the direct solution of the problem of interaction composition 
(see Lev 1984). Let a denote some partitio? of the considered system into subsystems 
a, . . . a,, and c(a)  a set of operators {q,, CT, e2, e;} for such partition. We denote 
by m ( a ) ,  % ( a ) ,  etc the operators h, 071, etc for such partition. Since we consider a 
description in the instant form, then for any partition a j (  a )  = j ,  P( a )  = P. We denote 
by c, %, etc the operators c(a) ,  % ( a ) ,  etc for a case when all interactions in our system 
are eliminated. Let A(0) be a unitary operator in X(O), which commutes with the 
parity operator in X ( 0 )  and satisfies the conditions: 

A(a) jA(a ) - '=  j ,  A(a)cA(a) - '=  c ( a ) .  ( 6 )  

We denote 

O % ( p ;  a)A(a)%(p) - '  d3p 

& ( a )  = A(a) - 'm(a )A(a ) .  (7) 
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According to the Sokolov method of packing operators (1977, 1978) (see also 
Coester and Polyzou 1982, Mutze 1984, Lev 1984), to solve the problem of interaction 
composition, one should construct a unitary operator d from operators & ( a )  at 
different partitions a and an Hermitian operator f i  from operators 6 ( a )  in such a 
way that upon elimination of interactions corresponding to an arbitrary partition b 
the operator d goes to d ( b )  and the operator f i  to f i ( b ) .  A solution of this 
combinatorial problem was given by Sokolov (1977) (see also Coester and Polyzou 
1982, Mutze 1984), but we shall not apply it to the corresponding formulae. We just 
note that the symmetry property of operators d( a )  and Ijl( a )  is rather important. This 
property means that the operators & ( a )  and I j l(a) should not depend on the order in 
which interaction has been eliminated between subsystems a, . . . a, (for a detailed 
description of the symmetry property see, e.g., Lev 1983). In the work by Coester and 
Polyzou (1982) the symmetry property is formulated in the form d( a)b  = &(a fl b )  
and in an analogous way for f i (  a) .  These properties are satisfied if the operator A( U )  

also satisfies the symmetry condition (see Lev 1984). 
The space X ( 0 )  can be represented as a direct orthogonal sum of four spaces 

X ( 0 )  = X o ( a ) O X , ( a ) O X , ( a ) O X 3 ( u )  (8) 

where X o ( a )  comprises the vectors annulled by operators cl(a) and cz(a),  X , ( a )  = 

c , (a )*Xo(a ) ,  X 2 ( a )  = c z ( a ) * X o ( a ) ,  X 3 ( a )  = c l (a)*cz(a)*Xo(a) .  We denote projectors 
onto these subspaces as l3,( a ) ,  their explicit expressions being 

no(a> = C 2 ( a ) C I  (a )c ,  (a)*c2(a)*  

n,(a 1 = C 2 ( Q  )* cl(a ) cl(a )* c2(a 1 
n i ( a  1 = Cl ( a  )* cz(a )CA a )* Cl ( a  1 
n3(a 1 = c1( a )* c2(a )* C 2 ( Q  1 c1( a 1. (9) 

Let B ( a )  be an operator which isometrically maps Xo onto X o ( a )  and commutes 
with the parity operator in W O ) .  If this operator satisfies the symmetry property and 
commutes with j ,  then, considering also the formulae ( 5 )  and (9), one can easily confirm 
that the solution for A ( a )  is of a form 

A ( a )  = n o ( a ) ~ ( a ) ~ o + n , ( a ) c , ( a ) * ~ ( a ) c l ~ l  

+ n2( a c2( a ) * B ( a  cznz + n3( a ) ci ( a * c2( a * B ( a ) ~2 CI n,. (10) 

Thus, one should find only the operator B ( a ) .  Since operators no and IIo(a) 
commute with j and with the parity operator in X ( 0 )  (which follows from ( 5 )  and 
(9)), then such an operator B ( a )  which isometrically maps Xo onto %,(a) and is 
expressed only through operators no and n 0 ( a )  satisfies all conditions. It is well known 
that such an operator exists if the following condition is satisfied: 

IIflo(a) - l 3 o l l  < 1. (11) 

We denote R ( a )  = (rIo(a) One can directly confirm that R ( a )  commutes with 
no(a) and no, and the operator B ( a )  at the condition (11) can be defined by the 
formula (see, e.g., Kat0 1966) 

B( a )  = no( a)n,( 1 - R( u))-I’Z. (12) 
Thus, if the condition (1 1) is satisfied, the operator A( a )  satisfying all requirements 

is given by (10) and (12). The condition (11) is thought to be a natural one in terms 
of the general perturbation theory of linear operators (see, e.g., Kat0 1966); however, 
its verification can be accomplished only in specific models. 



Letter to the Editor 

As noted in the work by Lev (1984), in the case of conventional relativistic invariance 
there exists the solution A( a )  = 1, at all a, in the instant form, whereas in other forms 
the ‘packing operators’ A ( a )  are necessarily non-trivial. We see now that in the 
supercase the ‘packing’ is non-trivial in the instant form as well. This is due to the 
fact that operators m ( a )  commute with q ( a )  which at different a, generally speaking, 
differ from each other, and all operators f i ( a )  should commute with the free 
operators q. 

The scheme presented can be used for various applications. In particular, in an 
analogy with the case of conventional relativistic invariance (see, e.g., Lev 1985) one 
can construct the relativistic quantum mechanics of superparticles. 

The author is grateful to L A Kondratyuk and S N Sokolov for useful discussions, as 
well as to G V Blankov for translating and typing the manuscript. 
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